MASS Java Developers Guide

MASS Java Developers Guide
August 31, 2016

1. Intro
This document is to help understand the methods and rules for developing features for the MASS
Java library and applications for it.

2. Table of Contents
T | 11 (0 TSP PP PSP 1
A =1 o] (=) O] 01 0=] 1 TSRS 1
B T 1 o PRSP OPR 1
3.1. Location of MASS Java and ApPlICAIONSccceiiiieriiieierieseseeeee e 1
3.2. Getting a Copy of the Code for DeVelopmeNt..........cccveiiiiiieiiiciie e 1
TR TR =101V [(0] 0114 =T o | TSRS P RS PRPRIO 2
4. MaKing Changes t0 IMASSo bbbttt 2
4.1, PUSHING CRANGESvviiiieiie ettt ettt e e et e e s b e e reeanne e 2
4.2, BUIAING MASS ...ttt bbb 2
4.3, TeSING CRANGES ...cviiiii ettt ettt e b e e s b e e be e sre e e baeaabe e reennne e e 3
4.4, Debugging IMASS ...t ra e re e e nne s 3
5. IMASS COMPONENTSeeiutiiiieitiete ettt b e b e b e e r e e s e sbe e rense e be e e 3
5.1, DOCUMENTALIONviiiieieieiie ettt bbb s e s et e bbb ab e beeneene e 3
5.2, DebUQQEr PACKAGEe it 4
6. Creating Applications fOr MASS ... s 4
6.1. Creating APPHCALIONS.ccuiiiiiece ettt e et e e sraesteeneesraenne s 4
6.2. Compiling APPHICALIONSccueiiiiiiiieiee bbb 5
6.3. RUNNING APPIICALIONS.cuiiieiiieie ettt ettt e e sreesteenaesreenre s 5
6.4. Debugging APPHCALIONS........cccveiiiieiiese et sra et e e e e sae e s e enres 6
3. Setup

3.1. Location of MASS Java and Applications

MASS Java is found in a BitBucket repository at mass_java_core (the repository is private for
now). The most current committed code is found in the develop branch, so if any work is to be
done on the MASS Java library, do it on the code in that branch.

The applications for MASS Java are, again, stored in a BitBucket repository at mass_java_appl
(the repository is private for now). As with the code for the library, the most recent code is found
in the develop branch, so work on the code based in that branch.

3.2. Getting a Copy of the Code for Development
The easiest way to get a copy of the MASS Java code is to clone the repository listed above by
either typing

$git clone -b develop
https://bitbucket.org/mass_library_developers/mass_java_core

UW Bothell Computing and Software Systems 1

https://bitbucket.org/mass_library_developers/mass_java_core
https://bitbucket.org/mass_application_developers/mass_java_appl

MASS Java Developers Guide

from the command line or by using a Git client like SourceTree.

3.3. Environment

MASS requires the use of multiple computing nodes and it is required that the master node to
connect to the remote nodes by using SSH without a password. To do this, a private key needs to
be created. If running MASS on a distributed file system, type the following commands into the
terminal.

$cd ~/.ssh/
$ssh-keygen -t rsa
$mv id_rsa.pub authorized keys

When prompted in the ssh-keygen command, just press enter to accept the default value. Make
sure not to include a passphrase, because the MASS code does not allow for one. Just press enter
when prompted for one. You can test to see if this works by SSH’ing into a different computer in
the cluster.

4, Making Changes to MASS

4.1. Pushing Changes

If you are unfamiliar with using Git, checkout the Git training files found in the
~/Training/GitTraining$ directory on the 320 lab machines for an in depth discussion on how to
use it. There are also many resources on the internet to help learn Git.

If you want to add a feature, branch off of the develop branch and commit changes to that
branch. When you are finished with your feature, and it is tested, merge your branch to the
develop branch and fix any merge conflicts if they show up.

4.2. Building MASS

The core library is structured around Maven. Maven is able to build the library with its
dependencies and manage those dependencies. Maven will need to be installed on your computer
to build a properly functional JAR.

Many Java IDEs include support for Maven, either natively or with a plugin, and can build the
library from there. Refer to the IDE documentation for Maven to learn how to set this up. Maven
can also build projects from the command line if the Maven and javac executables are in the
system path. Typing

$mvn package

from the command line in the directory where the pom.xml is located will begin the build
process. Maven will download any necessary dependencies, compile the classes, and create the
final JAR executable. The JAR executable will be located in the target directory, even if you
used the IDE invocation method.

If you wish to include your most recently built MASS library in an application, type

$mvn clean package install

to save the newly created JAR in your local Maven repository.

UW Bothell Computing and Software Systems 2

https://www.sourcetreeapp.com/
https://maven.apache.org/

MASS Java Developers Guide

4.3. Testing Changes
Changes in MASS are to be tested with simple MASS applications, which are also Maven
projects. The process for creating, compiling and running them are found below.

4.4. Debugging MASS

Included within MASS, is a package named edu.uw.bothell.css.dsl.MASS.logging that writes
error and debug messages to a file. Currently, only error messages are written to the logs, but
debugging messages can be set to be written to the log. Setting the DEFAULT _LOG_LEVEL
variable in Log4J2Logger.java to LogLevel. DEBUG will allow debug messages to be written to
the log files. The log files are written to a text document that can be found in the log/
subdirectory that is created where MASS is run. MASS will create a file for each node, so each
node can be debugged separately.

The log files can be quite large and difficult to find useful information in them if the debug
messages are set, so it is recommended to run the MASS application with a small number of
Places and Agents. Also, if the MASS application is being run somewhere with limited disk
space, it is recommended to delete the log files or to move them somewhere else, otherwise Java
will crash.

To debug the methods available to the user, the printOutput variable in MASS.java can be set too
true. This will print status messages to the command line.

5. MASS Components

5.1. Documentation

This project makes use of an automatic documentation generator called Javadocs. It is strongly
encouraged to use this method of documentation to keep all the documentation standardized and
easily accessible of anyone needing to learn about the methods and classes in this library. The
generated documentation of the latest build can be found here.

The documentation is written between the /** and */ symbols at the beginning of a class,
method, or variable. Many IDE’s will automatically generate this by typing /** and pressing
enter above what you want to document. Inside those tags, there is a description of what that
class, method, or variable does; there are also other tags that can give descriptions for
parameters, return values, or exceptions that can be thrown in the case of methods. Details for
the most common tags are found below.

@param name description Describes a method parameter. One for each
parameter.

@return description Describes the return value.

@throws classname description Describes an exception that may be thrown from
this method.

@author author_name Describes an author

@version version_number Provides software version entry.

UW Bothell Computing and Software Systems 3

http://fukuda-cent-01.css.uwb.edu/jenkins/job/MASS-Java%20Develop%20Branch/javadoc/

MASS Java Developers Guide

This list is not all encompassing and a more complete list and guide can be found here. Leaving
entries blank may cause warnings when compiling the project, so if you create a Javadoc
comment make sure to fill it out completely and fill out blank ones you come across.

5.2. Debugger Package

Part of the MASS Java library are functions and classes that connect to a debugger application.
The debugger is mostly handled by functions in MASS.java, but there are also classes contained
in the package named edu.uw.bothell.css.dsl. MASS.MassData that are used to pass the
information about the current state of the Places and Agents to the debugger application. These
classes are NOT to be edited, without those changes being reflected in the debugger application.
These classes implement serializable, and are the classes that are sent to the debugger. If these
classes are changed without the changes being made in the debugger, a
StreamCorruptedException or an InvalidClassException can be thrown.

6. Creating Applications for MASS

6.1. Creating Applications

MASS applications are organized as Maven projects just like how the core library is organized
and packaged into executable JAR files. To create a new MASS application, navigate to the top
level folder in the MASS Java Applications repository and complete the following steps.

1. Enter the following command in the parent level directory

$mvn archetype:generate -DarchetypeArtifactId=maven-archetype-quickstart

a. When prompted to enter groupld use “edu.uw.bothell.css.dsl.mass.apps”’ without
the quotes.

b. When prompted to enter artifactld, enter the name of your application. This name
should not contain spaces or periods; instead, use a hyphen for separating words
e.g. mass-wave2d, mass-simulation-network-motif, UWCA.

c. When prompted to enter version, press enter to accept the default 1.0-SNAPSHOT
or enter a desired version but make sure it ends with -RELEASE or -SNAPSHOT
such as 1.0.0-RELEASE or 0.8.5-SNAPSHOT.

d. When prompted to enter package name, the default package name is the same as
the groupld, but it is necessary to include one more level for the application. The
package name should reflect the name of the application, for example if the
application name is mass-wave2d, a suitable package name would be
“edu.uw.bothell.css.dsl.mass.apps.wave2d ” without the quotes. It is customary to
specify package names using lowercase letters, no spaces, or non-letter characters.

e. Maven will then show a summary of configured options for review. Enter Y to
confirm or N to change a selection.

2. A new sub-directory with the app name will be created by Maven.

3. Copy source files to the newly created subdirectory relative to the new project directory:
/src/main/java/edu/uw/bothell/css/dsl/mass/apps/<app name>/, this folder structure is the
same as the package name selected in step 1d.

UW Bothell Computing and Software Systems 4

http://www.oracle.com/technetwork/articles/java/index-137868.html

MASS Java Developers Guide

4. Remove the App.java and AppTest.java auto generated source files found in the directory
above and in the /src/test/java/edu/uw/bothell/css/dsl/mass/apps/<app name>/ directory.
5. Modify the pom.xml in the new project directory.
a. Add <packaging>jar</packaging> after the <artifactld> element which is not
inside the <parent> element.
. Change the <name> element to something more descriptive.
c. Optionally, add a <description> element after the <name> element to include a
brief description of the application.
d. Remove the <url> element.

e. Remove the following section
1 <dependency>
2 <groupId>junit</groupId>
3: <artifactId>junit</artifactId>
4 <version>3.8.1</version>
5 <scope>test</scope>
6: </dependency>

f. Add the following section at the end of the XML document, before the closing
</project> element.

1: <build>

2 <plugins>

3 <plugin>

4 <groupld>org.apache.maven.plugins</groupId>

5: <artifactId>maven-javadoc-plugin</artifactId>

6 </plugin>

7 <plugin>

8 <artifactId>maven-assembly-plugin</artifactId>

9: <configuration>

10: <archive>

11: <manifest>

12: <mainClass>edu.uw.bothell.css.dsl.mass.apps.
13: (project package). (main class)</mainClass>
14: </manifest>

15: </archive>

16: </configuration>

17: </plugin>

18: </plugins>
19: </build>

In the source files, add the package name to each file by adding package
edu.uw.bothell.css.dsl.mass.apps.(project package); to each source file. When declaring Places
and Agents in the main, use (class name).class.getName() in the className field.

6.2. Compiling Applications

Compiling MASS Applications with Maven is similar to how the core library is compiled. In the
directory of the application (the same directory with the pom.xml) type the following command
into the command line and the executable JAR will be found in the target/ directory.

$mvn package

6.3. Running Applications

To run your MASS Java application, you will need to include the file, nodes.xml, in the same
directory you are running the application from for MASS to run. This file is an XML document
that passes information about the computing nodes you wish to be using to run your MASS

UW Bothell Computing and Software Systems 5

MASS Java Developers Guide

application on. If you do not have this file, MASS will not initialize causing your application to
fail. An example of this file is shown in the code sample below.

1: <nodes>

2: <node>

3: <master>true</master>

4: <hostname>Node0</hostname>

5: <javahome>/usr/bin/</javahome>

6: <masshome>~/MASS Application/</masshome>
7: <username>Node(OUsernameHere</username>
8: <privatekey>~/.ssh/id rsa</privatekey>
9: </node>

10: <node>

11: <hostname>Nodel</hostname>

12: <javahome>/usr/bin/</javahome>

13: <masshome>~/MASS Application/</masshome>
14: <username>NodelUsernameHere</username>
15: <privatekey >~/.ssh/id rsa</privatekey >
16: </node>

17: </nodes>

This sample defines two nodes, one at NodeO and the other at Nodel. Each element is described
as follows:

<nodes> This element contains each node element that the MASS application will
run on.
<node> This element contains information about a specific node that the MASS

application will run on. The number of these elements will determine how
many computing nodes will be used i.e. if there were eight <node>
elements, the application will run using eight computing nodes.

<master> A boolean which is true if that node is the master node or the node that the
application was initially run. Only required for the master node.

<hostname> The hostname or IP address for this node.

<javahome> The location of the java executable. If the java executable is part of the
system path, this element can be left blank.

<masshome> The location of the application JAR executable.

<username> The username for a profile to log onto this node.

<privatekey> The location of the key used to SSH into different computing nodes. If the
technique above was used to generate a key, use ~/.ssh/id_rsa in this field.

To run the executable, type the following commands in the command line.

$java -jar <MASS App Name>.jar <arguments>

A few applications have Ul components, so if you are running the application remotely, you will
need to enable X11 forwarding. If you are using SSH, you will have to use the -X flag when
entering the SSH command. If you are using PUTTY, you will need to download and install
Xming, and check the Enable X11 forwarding setting in Connection/SSH/X11.

6.4. Debugging Applications
The best tool to use to debug MASS application is the MASS debugger. This application was
developed as a way to see the data inside Places and Agents and pause the application at any

UW Bothell Computing and Software Systems 6

https://sourceforge.net/projects/xming/

MASS Java Developers Guide

time. The MASS application needs an extra two lines in the main to initialize the MASS end of
the debugger as well as two extra functions added to both of the overridden Place and Agent
classes. The debugger GUI, found here, has to be run separately at the same time as the MASS
application. More information about the debugger can be found in the MASS Java Specification
and the MASS Debugger (Java) Specification.

UW Bothell Computing and Software Systems 7

https://bitbucket.org/mass_library_developers/mass_debugger

